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The laminar breakdown induced by purely travelling crossflow vortices in a three-
dimensional flat-plate boundary-layer flow is investigated in detail by means of spatial
direct numerical simulations. The base flow considered is generic for an infinite swept
wing, with decreasing favourable chordwise pressure gradient and a sweep angle of
45◦. First, the primary downstream growth and nonlinear saturation state of a single
crossflow wave are simulated. Secondly, background disturbance pulses are added,
and the subsequent mechanisms triggering transition to turbulence in this scenario are
identified and analysed in detail. The saturated travelling crossflow vortex is found
to give rise to a co-travelling secondary instability not unlike the instability in the
much investigated steady crossflow-vortex case, but with characteristic differences.
An analysis method with a spanwise Galilean transformation to travel with the
primary wave and a consequently adapted timewise/spanwise Fourier decomposition
of the disturbance flow enables unambiguous isolation of the various secondary
disturbance modes. The resulting flow structures and their dynamics in physical space
are visualized.

1. Introduction
On a swept-back wing, the chordwise acceleration of the flow in the upper front

part induces an inboard-oriented crossflow component inside the boundary layer
perpendicular to the meanflow direction. The crossflow velocity profile ws(y), y

being the wall-normal coordinate, is inflectional and causes a strong primary spatial
instability of the flow with respect to so-called crossflow (CF) eigenmodes, which can
be steady or unsteady. Unsteady modes have a higher maximum primary (exponential)
amplification than steady modes.

For crossflow-instability dominated flows, two main different transition scenarios
can be distinguished depending on the flow conditions. Unsteady CF disturbances
have been found to be dominant at medium- to high-turbulence conditions, where
they are excited on higher-amplitude levels and hinder the development of the
unstable steady modes. At low free-stream-turbulence conditions, steady crossflow
vortex modes are found to be dominant. Obviously, the steady modes which are excited
even by minute surface non-uniformity or roughness start with higher amplitudes.

Most investigations concentrated on regimes with pure or still significant steady
primary disturbances. This is because low-turbulence conditions are supposed to be
present in free flight, but also because a steady primary scenario is more tractable.
Most experimental work on the subject, employing controlled experiments with
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well-defined artificial disturbance input, has been done by three groups: at DLR
Göttingen, Germany, by Bippes, Deyhle, Lerche and co-workers; at the unsteady
wind tunnel facility of the Arizona State University (ASU) by Saric, White and
others (for reviews, including work of others, see Bippes 1999 and Saric, Carrillo
& Reibert 1998); and at Tohoku University, Sendai, by Kohama, Kodashima &
Watanabe (1995) and Kawakami, Kohama & Okutsu (1999). In parallel, a number of
theoretical investigations on this topic have been performed. Typically, the parabolized
stability equations (PSE) are used to calculate nonlinear states of the primary unstable
steady crossflow modes, see, e.g. Malik, Li & Chang (1994), Malik et al. (1999),
Haynes & Reed (1996, 2000), Janke & Balakumar (2000) and the more general
review by Reed, Haynes & Saric (1998). Koch et al. (2000) additionally use nonlinear
equilibrium solutions. Subsequently, Floquet theory is employed for a temporal
secondary instability analysis to identify the most amplified secondary instabilities.
The theoretical studies have been continued by Koch (2002). Furthermore, several
investigations by means of direct numerical simulations (DNS) have been carried out.
Various DNS using the temporal model were performed by Kleiser and co-workers,
lately by Wintergerste & Kleiser (1996, 1997). The computationally more demanding
and physically more sound spatial model has been used by Högberg & Henningson
(1998) and in our former investigations (Wassermann & Kloker 2002). The results of
the latter work agree well with the independent experimental findings by White &
Saric (2003), see also the review by Saric, Reed & White (2003).

The entirety of this work resulted in a thorough understanding of the transition
process initiated by saturated steady crossflow vortices. In physical space, strong
co-rotating vortices are formed with their axes oriented approximately along the
outer streamline. Upon downstream vortex saturation, the mean flow is deformed
resulting in the formation of strong shear layers, which are connected to local
wall-normal and crosswise inflectional mean profiles us(y) and us(z). They trigger
a convective high-frequency secondary instability with explosive spatial growth of
unsteady modes. The frequency of the most amplified secondary mode is about one
order of magnitude higher than the frequency of the most amplified primary CF mode.
(In DNS, unsteady/background disturbances have to be added to the steady flow
field.) These instabilities are localized in physical space, i.e. they move focused along
the primary vortical structure, and appear mostly in the low-momentum upwelling
region, where especially the spanwise gradients in the meanflow become extreme. The
growth of these secondary instabilities is connected to the appearance of secondary
finger-vortices twining around the crossflow vortices from their upward moving side.
We observed final breakdown by tertiary vortices in between the secondary finger
vortices.

Principally, three different classes of secondary instability mode were identified:
(i) The high-frequency ‘mode I’ or ‘z’ mode, induced by the minimum of the spanwise
gradient of the streamwise velocity component; this mode seems to be most important
(see Wassermann & Kloker 2002; White & Saric 2003); (ii) the high-frequency ‘mode
II’ or ‘y’ mode, induced by the local maximum of the wall-normal gradient, and
(iii) the low-frequency ‘mode III’, most probably linked to the maximum of the
spanwise gradient. The modes exhibit their amplitude maxima in the respective
regions of the deformed three-dimensional mean flow, i.e. the most amplified ‘z’ mode
is located at the updraft crossflow vortex side, and the ‘y’ mode on top of the vortex.
The weaker amplified mode-III class is found under the vortex close to the wall.

On the other hand, investigations dealing with transition scenarios characterized by
the superposition of steady and unsteady primary disturbances have less conclusive
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findings. The basic effect of the interaction on the mode growth was found relatively
early in experiments and computations. Malik et al. (1994), for example, studied
the linear and nonlinear crossflow disturbances as well as the interaction between
steady and travelling modes in swept Hiemenz flow solving the PSE. They found that
‘when the initial amplitude of the stationary vortex is larger than the travelling mode,
the stationary vortex dominates most of the downstream development. When the two
modes have the same initial amplitude, the travelling mode dominates the downstream
development owing to its higher growth rate.’ These results were confirmed by other
investigations, see, e.g. the DNS work of Wintergerste & Kleiser (1996, 1997), Bonfigli
& Kloker (1999, 2000), and the investigations of Huai, Joslin & Piomelli (1999) using
large-eddy simulation. As for the later transition stages, a common conclusion is:
whenever a strong travelling CF vortex is present and interacts with a still significant
steady CF vortex (of at least 10% us-disturbance amplitude), the three-dimensional
steady flow deformation is distinctly weaker, but transition can set in comparably
early. The DNS work gives some indication that in this case the nonlinear interaction
of the primary steady and travelling modes/vortices generates vortical interaction
structures that lead the transitional process before some kind of known secondary
instabilities come into play. Moreover, the amplitude ratio of travelling to steady mode
and the amplitude of possibly provided additional background disturbances have a
major influence on the process. We point out that, at clean conditions, an unsteady
pure single crossflow wave cannot lead to transition (in a convectively unstable
manner) because it generates only non-zero diagonal elements in the frequency-
spanwise wavenumber space, and the necessary spectrum-filling modes have to be
added.

In the experiments of Lerche (1996, 1997) and Bippes (1999) two different cases
were distinguished with controlled unsteady-wave input. First, the case (0, 1) + (1, 1),
characterized by both a saturated steady and unsteady crossflow mode attaining an
amplitude of about 10% each, and secondly, the case (1, 1) with only the unsteady
mode (1, 1) forced resulting in a saturation amplitude of 10% for the unsteady wave
and a saturation amplitude of only 2% for the experimentally unavoidable steady
vortex mode. Both scenarios reveal an enormous complexity for the disturbance
development and initiation of final breakdown. An indication was found that in the
wave dominated case (1, 1) a co-travelling secondary instability exists, with somewhat
similar appearance to the mechanism found in case (0, 1) + (1, 1) (see figure 1, taken
from Lerche’s dissertation 1997). The isocontours of the wall-normal gradient and the
second time derivative of the streamwise velocity component in a flow-field crosscut
over time give an indication of higher-frequency activity around the gradient tubes.
Lerche could not further analyse the mechanism with the experimental data since
storage of the full three-dimensional unsteady flow field would have been necessary.
In his concluding review Bippes focused on the wall-normal gradients of the local
instantaneous flow. Note also that the steady-vortex amplitude is not negligible in
this case.

Growth rates of a secondary instability induced by travelling primary crossflow
waves on a swept cylinder have been calculated by Malik, Li & Chang (1996),
using secondary instability analysis in a reference frame moving with the spanwise
phase speed of the primary wave. They found the rates twice as high as in the
case with steady primary disturbances, and at somewhat lower frequencies, but
did not further analyse this finding because in the corresponding experiment the
frequency of the secondary instability connected to the steady primary vortices
dominated.
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Figure 1. Crossflow-wave induced secondary instability (figure 76b from Lerche 1997,
experiment at DLR Göttingen). Shown are isocontours of the wall-normal gradient (also
at the wall) of the streamwise disturbance velocity component us induced by the travelling
primary vortices (tubes); the dark clouds around the tubes mark high values of the second
time derivative of us . Spanwise cut over a fundamental time period.

Seemingly of academic interest at first, we find the investigation of purely travelling
primary vortices a prerequisite for further proceeding in the detailed understanding of
the transition mechanisms active in practically relevant cases with unsteady crossflow
vortices involved. In all experimental and DNS investigations dealing with unsteady
crossflow modes known so far, including our own work, a timewise/spanwise or
streamwise/spanwise Fourier decomposition of the disturbance flow has been applied
in a fixed frame of reference. This indeed prohibited an insightful analysis of the
data gained. Thus, we have simulated the transition process initiated by a pure
single crossflow wave superposed by small-amplitude background disturbances at its
saturation by spatial DNS, and employed a refined analysis method upon moving
spanwise with the wave to tackle the following issues:

(i) documentation of the unsteady saturated primary state;
(ii) identification of possibly existing relevant secondary instability modes;
(iii) identification and clarification of the transition mechanism;
(iv) visualization of flow structures throughout the laminar breakdown;
(v) comparison to steady crossflow-vortex induced transition: similarities and

differences.
The structure of the paper is as follows: In § 2, a brief summary of the numerical

method is given. In § 3, the considered laminar base flow is presented, and in § 4, its
primary stability properties are analysed. In § 5, the laminar breakdown initiated by
the saturated crossflow wave is investigated in detail. In § 5.1, the saturated primary
state is documented, and in § 5.2, the secondary instability mechanism triggering
transition is identified and analysed.

2. Numerical method
The numerical method for spatial DNS is based on a vorticity-velocity formulation.

All variables are non-dimensionalized by the reference length L̄=0.05 m, the chord-
wise free-stream velocity Ū∞ = 30m s−1 and the Reynolds number Re = Ū∞L̄/ν̄ =
100 000, where the overbar denotes dimensional variables and ν̄ is the kinematic
viscosity.
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Figure 2. (a) Integration box. (b) Top view of the swept flat plate with the body-fixed
chordwise coordinate system (x, z), the body-fixed streamwise system (ξ, ζ ) (rotated by
ψ = 39◦), the moving chordwise system (xm, zm) with zm = z − β1/γ1t , and the moving
streamwise system (ξm, ζm) (rotated by ψm = 35◦).

We have the vectors of vorticity ω = {ωx, ωy, ωz}T and velocity u = {u, v, w}T , with
the first component in the chordwise (x-), the second component in the wall-normal
(y-) and the third component in the spanwise (z-) direction. The vorticity components
are defined as

ωx =
∂v

∂z
− ∂w

∂y
, ωy =

∂w

∂x
− ∂u

∂z
, ωz =

∂u

∂y
− ∂v

∂x
. (2.1)

We use a disturbance formulation keeping the full equation set, in order to ease
formulation of boundary conditions. For the infinite swept conditions, each flow
variable is split into the steady laminar base flow part with ∂/∂z ≡ 0 (index B) and
the unsteady three-dimensional disturbance flow part (denoted by a prime):

f (x, y, z, t) = fB(x, y) + f ′(x, y, z, t) with f ∈ {u, v, w, ωx, ωy, ωz}. (2.2)

Note that for nonlinear disturbances, the time mean 〈f ′〉 	= 0, of course. The simula-
tion is carried out in a rectangular integration domain (figure 2). Owing to the disturb-
ance formulation, the simulation splits up into two steps. First, the steady base flow
is calculated; subsequently, defined disturbances are introduced in disturbance strips
at the wall and the disturbance flow is calculated. All base flow quantities are
independent of the spanwise coordinate z, but there is a velocity component wB in the
spanwise direction. For the calculation of the disturbance quantities, the assumption
of infinite span yields periodic boundary conditions in the spanwise direction. Thus,
the numerical method uses a complex Fourier spectral representation in the spanwise
direction to calculate the non-symmetric three-dimensional flow (with periodicity
λz = 2π/γ1). In the x- and y-directions, a finite-difference (FD) discretization is used,
based on a blockwise equidistant rectangular grid with a special wall zone, where the
step size 	y is halved. Principally, sixth-order compact FDs are used. The nonlinear
terms in the vorticity transport equations are computed pseudospectrally and their
x-derivatives are differenced with a special split-type method with inherent damping;
the time integration is done by a 4-step fourth-order Runge–Kutta method. For a
detailed description of the numerical method see Kloker (1998), Bonfigli & Kloker
(1999) and Wassermann & Kloker (2002).
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Defined disturbances are introduced in the laminar flow field in several disturbance
strips at the wall where the disturbances are enforced with momentum input, but no
net mass flow:

v′(x, 0, z, t) = fv(x)

(
K∑

k=1

2A0,k cos(kγ1z + Θ0,k)

+

H∑
h=1

K∑
k=−K

2Ah,k cos(kγ1z − hβ1t + Θh,k)

)
. (2.3)

The first sum represents a steady part that is only used for a reference case for
comparison. fv is a piecewise-defined symmetric fourth-order parabola (−3τ 4 + 4τ 3

for 0 � τ < 1, and −3(2 − τ )4 + 4(2 − τ )3 for 1 � τ � 2, [0, 2] 
→ [xj − 0.5	xs, xj +
0.5	xs]; it has vanishing first and second derivatives at the respective ends of the
strips; γ1 is the fundamental spanwise wavenumber.

For the analysis of the unsteady three-dimensional flow data, different coordinate
systems are used (see figure 2(b)). First, we have the body-fixed chordwise system
(x, y, z). Secondly, we have the body-fixed streamwise system (ξ, y, ζ ) that is rotated
with respect to the (x, y, z)-system by a fixed angle of 39◦ to follow the only
slightly changing direction of the outer streamline. The other systems, the wave-
fixed chordwise system (xm, y, zm) and the wave-fixed streamwise system (ξm, y, ζm),
represent Galilean-transformed systems and are moving (index m) in the positive
z-direction at constant speed cz to follow the movement of the dominating primary
crossflow wave; cz = β1/γ1 = hβ1/(kγ1) for h = k, where β1 is the fundamental
frequency:

zm = z − czt = z − β1/γ1t. (2.4)

Note that a single crossflow wave, denoted as mode (1, 1) where the numbers give
h, k, respectively, nonlinearly generates only modes with h = k like (2, 2), (3, 3), etc.,
that all have the same phase speed cz. The moving streamwise system is rotated by a
fixed angle of 35◦ to account for the different direction of the outer streamline in the
moving system.

2.1. Code validation

The numerical method is well tested; for the investigations presented here, we have
compared the quasilinear development of a small-amplitude unsteady CF wave with
DNS-results of Spalart, Crouch & Ng (1994). The chordwise amplitude developments
shown in figure 3 coincide as well as the results for steady crossflow modes in
former calculations (Wassermann & Kloker 2002). Even in the transient region just
downstream the excitation of the disturbance, the amplitude developments coincide,
although Spalart et al. apply a body force inside the boundary layer, whereas forcing
at the wall by the wall-normal velocity is used in our studies.

2.2. Numerical parameters

For the following simulations, the uniform blockwise equidistant grid typically con-
tained 2106 × 257 points in the (x, y)-directions (with 	x = 0.0017952, 	y =
0.000278). In the spanwise direction first K = 16 spectral modes, corresponding to
γmax = 1440, are used. For the first 33 points in the wall-normal direction 	ywz = 1

2
	y.

The number of time steps per fundamental disturbance period β1 = 2πf̄ L̄/Ū∞ = 14
was 1200. In former investigations, it has been shown that even γmax only equal to
eight times the wavenumber of the dominating primary mode is fine enough to capture



Transition mechanisms induced by travelling crossflow vortices 73

0 400 800 1200 1600 2000
10–7

10–6

10–5

10–4

x̂

m
ax

y{
u h,

k}

u�

v�

Figure 3. Comparison of the chordwise amplitude development with results of Spalart et al.
(1994). The background plot shows the u′

(1,1) and v′
(1,1) amplitude development for an unsteady

mode with β = 16, γ = 21, as scanned from their paper, figure 4. Our DNS results are marked
by the symbols. Here x̂ = 400x; γ = γ̄ L̄. The u′-amplitude curve is fit near x̂ ≈ 1000, with the
ratio u′/v′ untouched.

correctly the onset of secondary instability and its initial quasilinear growth. For the
calculation of the later stages of transition the numerical resolution is significantly
refined. Here, a grid with Kf = 32, 	xf = 1

2
	x, 	yf = 2

3
	y and 	tf = 1

2
	t is used.

The problem has been run on the NEC SX-5 (16 vector-processors, 32 GB RAM)
of the high-performance computing centre at Stuttgart (HLRS). A calculation takes
about 2.2 µs per gridpoint and full time step on a single processor. The performance
is about 2 GFLOPS per CPU, representing 50% of the theoretical peak performance.

3. Laminar base flow
The base flow is designed to resemble the flow in the upper front region of a swept

wing and is the same as used in our previous study (Wassermann & Kloker 2002).
The streamwise edge velocity is adopted from Spalart, Crouch & Ng (1994) and
defined analytically by

up0(x) =
3

2π

(
arctan

(
x − a

b

)
+ arctan

(
x + a

b

))
− cx (3.1)

with

a = 0.2611, b = 0.41015, c = 0.056.

The integration domain starts at x0 = 0.25 close to the leading edge (local Hartree
βH (x0) = 0.99) and extends for the following investigations up to xN = 4.03. The
sweep angle is ϕ∞ = 45◦ and the local angle of the external streamline varies from
ϕe(x0) = 68.1◦ to the minimum value of ϕe = 39.7◦ at x = 2.65 and ϕe(xN ) = 40.3◦

(figure 4). The Reynolds number based on the chordwise displacement thickness δ1

rises from Reδ1(x0) = 67 to Reδ1(xN ) = 1180 and the displacement thickness increases
by a factor of six within the domain. The crossflow amplitude w̃s,B = ws,B/us,B,e

decreases from 13% to 4% in the relevant region (see figure 5); the crossflow
Reynolds-number range is 60 � ReCF � 130 (ReCF = ws,B,maxŪ∞ȳ10/ν̄, ȳ10: far-wall
y-position where ws,B = 0.1 × ws,B,max). The maximum value is at x = 1.75.
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Figure 4. Base-flow parameters in the plate-fixed coordinate system.
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4. Primary instability properties
4.1. Linear stability theory

The laminar baseflow has been analysed in detail by means of spatial linear stability
theory (LST) to obtain an overview of relevant instability modes. Figure 6 shows the
stability diagram as a function of spanwise wavenumber γ and frequency β at x = 1.0.
This position is just downstream of the disturbance excitation in the DNS discussed
below. Here, the typical stability properties for dominating crossflow instability can
be identified with amplified steady disturbances, weakly amplified waves travelling
with the crossflow, and the strongest amplification for waves travelling against the
crossflow to the right (β ≈ 14, γ ≈ 110). For β = 14, the integrally most amplified
frequency up to x = 2.0, the stability diagram is plotted in figure 7 as a function
of chordwise coordinate and spanwise wavenumber. Here, the persistent stronger
amplification for the right-travelling waves is clear-cut, and the shift of the maximum
amplification to lower γ values for larger x is visible. Furthermore, γ = 90 can be
identified as one of the most amplified wavenumbers.

As a result of the stability analysis, the fundamental values γ1 = 90 (= γ̄1L̄) and β1 =
14.0 have been chosen for the subsequent DNS. Compared to the computational raster
used in former investigations for steady-vortex induced transition (see Wassermann
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Figure 7. Stability diagram from LST for unsteady modes with frequency β = 14.0.

& Kloker 2002), γ1 is doubled, and thus the mode notation does not compare. The
discrete waves are presented in the frequency-spanwise wavenumber spectrum (h, k),
so the mode (h, k) denotes a mode with the spanwise wavenumber kγ1 and a frequency
that is h times the fundamental frequency β1.

In figure 6, the primary crossflow modes considered in the framework of this paper
are marked by symbols. In case WAVE a single right-travelling wave is considered,
whereas in case VORTEX, the steady reference case, a single crossflow vortex mode
is forced as primary disturbance.

4.2. Direct numerical simulation

In a basic simulation (case LINEAR), the quasilinear development of the steady
mode (0, 1) and the unsteady mode (1, 1) has been simulated. The disturbances are
introduced at x = 0.68 with an amplitude of A(h,k) = 1.0 × 10−6 each. In figure 8, the
(t-z)-modal amplitude development clearly shows the mode (1, 1) to be the stronger
amplified mode. The steady mode (0, 1) is amplified more continuously resulting in
an integral amplification comparable to mode (1, 1). Nevertheless, the amplitude at
x = 3.5 is only about a fifth the amplitude of mode (1, 1), since the effective initial
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Figure 8. Quasilinear downstream (t-z)-modal amplitude development of the crossflow
modes (1, 1) and (0, 1) in case LINEAR; ũs,h,k-maximum over y, ũs = us/us,B,e.

amplitude at growth onset is by a factor of about three less. The length of the
disturbance strip is 14	x, corresponding to 0.17×λx,(1, 1) and 0.29×λx,(0, 1), respectively,
where λx is the respective chordwise wavelength. The DNS growth rates are somewhat
higher throughout the integration domain than predicted by LST.

5. Saturation, secondary instability, and breakdown
The following investigations focus on the nonlinear saturation and secondary

instability of an unsteady crossflow mode, and on the final laminar breakdown. The
results are compared to a steady-crossflow-vortex dominated scenario considered in
former investigations (case VORTEX, which is case 3 in Wassermann & Kloker
2002), to work out similarities and differences. In this reference case, the steady
mode (0, 1) has been excited as primary disturbance, and superposed by periodic
background pulses resulting in a classical crossflow-vortex induced transition scenario
with strongly amplified secondary instabilities triggering the laminar breakdown.

5.1. Nonlinear saturation of a single unsteady crossflow wave

For the calculation of a nonlinear, saturated crossflow-wave scenario the crossflow
mode (1, 1) is introduced at x = 0.68 with an amplitude of A(1,1) = 5.0 × 10−3 in
case WAVE. By turning on the disturbance, a moving disturbance front is generated.
As this disturbance front is convected downstream, the flow field settles slowly to an
unsteady, strictly periodic saturated state. The nonlinearly generated higher harmonics
(modes (2, 2), (3, 3) etc.) of the forced mode are the only spectral modes of measurable
amplitude in addition to the (0, 0) mode. The superposition of these modes represents
the saturated unsteady primary state. Note that these modes travel in the spanwise
direction at the same speed β1/γ1. In the clean-condition simulation, the off-diagonal
elements of the disturbance spectrum in the (h, k)-plane have vanishing amplitudes,
and consequently, laminar breakdown does not occur. This, in fact, indicates that no
absolute instability with timewise growing disturbances exists.

The (t-z)-modal amplitude development in figure 9(a) shows that the forced
disturbance mode is strongly amplified by primary instability first. Directly after
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Figure 9. Downstream (t-z)-modal amplitude development (ũs,h,k-maximum over y) in case
WAVE (modes (k, k), left) and case VORTEX (modes (0, k), right). The short-dashed line
indicates the quasilinear amplification of the forced modes.

excitation, the amplitude growth perfectly coincides with the quasilinear development
(case LINEAR), before the mode starts to saturate (saturation at x ≈ 1.4) and finally
slightly goes down in amplitude. We note that the decay of (1, 1) downstream of
x = 2.4 in figure 9(a) is due to changing baseflow properties, as a simulation with a
constant Hartree-parameter baseflow only shows the slight amplitude drop after first
saturation, followed by a further slight increase over the first saturation level. (This
behaviour is consistent with observations of Koch et al. 2000, see their figure 10b).
For comparison, figure 9(b) shows the amplitude development in the reference case
VORTEX with steady primary disturbance mode. Obviously, the steady modes are
less sensitive to the changing baseflow properties.

Accordingly, in case WAVE, one travelling vortex per spanwise wavelength evolves
with clockwise rotation when looking downstream (see figure 10). The vortex axes
are aligned with an angle of about 9◦ to the inviscid streamline in the fixed system,
and the vortices are travelling in the positive z-direction at constant speed β1/γ1.
Upon passing by, the vortices instantaneously transport slow fluid from the near-wall
region up into faster regions resulting in an unsteady deformation of the meanflow
profiles us(y) and us(z), with relatively large y-gradients. In figure 11, the time-
averaged meanflow profiles at various crosswise positions in the fixed system 〈ũs(y)〉
and in the moving system 〈ũs,m(y)〉 are shown. Here, it becomes obvious that only the
consideration of the moving system yields expressive results. In the fixed system, the
time-averaged mean flow profiles do not show any spanwise variation, known from
steady-crossflow-vortex dominated regimes, because the vortex movement is averaged
out. Nevertheless, those profiles are often employed as a criterion for secondary
instability even if unsteady waves are involved (see, e.g. Bippes 1999). Only the two-
dimensional distortion of the meanflow, mode (0, 0), adds to the baseflow profile. (The
partial thickening of the curve seen here is caused by the x-development of mode
(0, 0) since x varies with constant ξ ). On the other hand, in the system moving with
the vortex, a strong crosswise variation can be identified, not unlike the variation in
case VORTEX in the fixed system.

The figures 12 and 13 show the deformed flow field in case WAVE; in figure 14 case
VORTEX is shown with identical scaling. The detailed comparison reveals several
significant differences in the three-dimensional deformation of the flow. In figure 12,
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Figure 10. Visualization of vortical structures in the instantaneous flow fields for case WAVE
by λ2-isosurfaces, λ2 = −50. Approximately two spanwise wavelengths are shown; note the
compression of the ξ -axis. (a) t/T = 0, (b) t/T = 0.5.
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Figure 11. Mean flow profiles at equidistant crosswise positions for case WAVE. (a) Fixed
streamwise system, ξ = 2.0. (b) Moving streamwise system, ξm = 2.0. The profile for ζm = 0.068
is emphasized and the dot marks the wall-normal position of the maximal amplitude of the
most amplified secondary instability mode.

the instantaneous flow deformation of case WAVE is shown in the fixed streamwise
coordinate system; figure 13(a) shows it in the moving streamwise system. Apart
from an arbitrary phase shift, the figures mainly collapse; the small differences are
caused by the slightly different velocity and axes directions. Thus, for the following
comparison with the steady reference case the presentation in the moving system
(figure 13) is used, in which the travelling wave appears as a steady one.

Compared to case VORTEX, in case WAVE all structures are situated much closer
to the wall. The centre of the travelling vortex is situated at half the boundary layer
thickness δ, and the region of noticeable ũ′

s extends as far as 0.9δ; the corresponding
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Figure 12. Instantaneous us-isolines in a crosscut in the fixed streamwise system at ξ = 2.0
for case WAVE in the saturation state. To scale.
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Figure 13. Flow field crosscuts for case WAVE (nonlinearly saturated crossflow wave) in the
moving streamwise system at ξm = 2.0: (a) deformed mean flow; (b), (c) y- and zm-gradient
of the deformed meanflow; (d) deformation of the mean flow; (e) λ2 isolines; (f ) vorticity
component in mean-flow direction. Negative isolines are dashed, the zero line is not shown.
To scale. The dotted horizontal line markes the laminar boundary-layer thickness at ζm = 0.
This quantity varies only by 2% over the ζm-range shown here. The insert on the right-hand
side shows the crossflow profile ws,B = ws,B,m + β1/γ1 at ξm = 2.0, ζm = 0. The cross marks
the position also marked in figure 19(c).
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values for case VORTEX are 0.8 δ and 1.5 δ, respectively (figures 13d, e, 14d, e).
Owing to the travelling primary disturbance, the structures are somewhat stretched in
the spanwise direction, even in the moving system. The regions of local acceleration
and deceleration (figure 13d) overlap, whereas a clearer spanwise separation is present
in case VORTEX (figure 14d). The most pronounced shear layer is relatively flat in
the unsteady case with an angle of only about 16◦ whereas it is 40◦ in the steady case
(figure 14a–c). Thus, the y-gradients are much larger than the z-gradients, with the
ratio 4.3:1 versus 1.2:1.
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Figure 15. Downstream development of the maximal (over y and z) deceleration of the
mean flow and the modulus of the streamwise vorticity (maximal clockwise rotation) in the
cases WAVE and VORTEX. ——, WAVE: min{〈ũ′
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The maximum local deceleration of the mean flow 〈ũ′
s,m〉 in the unsteady case

WAVE does not surpass the threshold level that we found for the onset of secondary
instability in case VORTEX (〈ũ′

s〉 � −0.3), although the maximum local streamwise
vorticity ωx,s,m is significantly larger than in the steady case (figure 15). We observe
that in case WAVE, the deceleration amplitude follows the maximum local strength
of the streamwise vorticity component, whereas in case VORTEX, the streamwise
gradient of the deceleration does so. In the steady case, the lift-up of slow fluid
from the near-wall region to the outer part of the boundary layer induced by the
streamwise vortices is much more pronounced owing to the persistent positive wall-
normal velocity disturbance at fixed locations. This leads to an integrated effect along
the streamwise direction since the vortices are steady with their axes aligned along
the potential streamline. For the travelling vortices whose axes are tilted with respect
to the streamwise direction, such an integral effect cannot occur.

5.2. Secondary instability and laminar breakdown initiated by the single unsteady
crossflow wave

In the WAVE scenario discussed so far, the flow field finally settles to an unsteady,
saturated, strictly periodic state without laminar breakdown. Naturally, transition
to turbulence can only be caused by unsteady disturbances filling the frequency–
spanwise-wavenumber spectrum. To this end, periodically pulsed low-amplitude
disturbances have been superimposed in case WAVE + B to model the natural
disturbance background. The periodic background pulse consists of superposed, in-
phase harmonic waves with discrete frequencies from β = 14 up to β = 350 with 	β =
14, for k = ±1, with A(h,±1) = 5.0×10−5 and Θh,k = 0 for each component (see equation
(2.3)), and has been excited at x3 = 1.25, just upstream of the saturation point of the
primary disturbance. It is only given for the spectral component k = ±1, since the
large-amplitude mode (1, 1) and its higher harmonics generate the other background
spectral components at once.
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Figure 17. Isocontours of normalized ũs,h-amplitude for case WAVE+ B in a crosscut in the
fixed streamwise system. Isolines from 0.35 to 0.95 with a 0.2 spacing are shown. The dotted
line indicates the laminar boundary-layer edge. To scale.

In investigations of transition scenarios dominated by steady CF vortices, the
t-modal representation

ũ′
s(x, y, z, t) =

H∑
h=0

ũs,h(x, y, z) exp(−i(hβ1t − Θh(x, y, z))), (5.1)

has proved to be a suitable analysis method. It can be recomposed from the classical
(t-z)-modal decomposition into modes (h, k) by collecting the modes (h, k), k =
−K, . . . , K for each h. The secondary instabilities triggering transition are clearly
characterized by their two-dimensional amplitude distribution ũs,h(y, z) in flow-field
crosscuts and the downstream development of the amplitude maximum (over y and
z) rather than their (β-γ )-spectral content.

In figure 16, the result of such a t-modal analysis is shown for case WAVE + B.
After a short transient region, strong amplification can be seen for the high-frequency
background disturbances (β = hβ1 ≈ 140), whereas the low-frequency background
disturbances cannot be identified, since their amplitudes are mainly hidden in the
nonlinear higher harmonics of the fundamental wave (modes (h, k) with h = k). The
amplitude distribution for one frequency in the crosscut in figure 17 shows that the
spanwise movement of the events smears this distribution. Thus, it is necessary to
isolate all modes (h, h) that just represent the saturated unsteady primary vortex.
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Figure 18. Downstream t-modal amplitude development for case WAVE+ B in the moving
system: single crossflow wave plus periodic background pulses. Frequencies from βm = 0 to
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210. The insert shows a close-up with the frequency βm = 42 emphazised. The sketch on the
right-hand side illustrates the coherence of (t-z)-modal and t-modal decomposition in the fixed
and the moving system, respectively.

An appropriate analysis method for wave dominated scenarios is the t-modal
decomposition in the Galilean-transformed system (zm = z − β1/γ1t):

ũ′
s,m(x, y, zm, t) =

L∑
l=0

ũs,l(x, y, zm) exp(−i(lβ1t − Θl(x, y, zm))). (5.2)

This representation can be recomposed from the classical (t-z)-modal decomposition
by summing up the modes (k + l, k), k = −K, . . . , K for each l, i.e. the modes
belonging to the same diagonal as in the sketch in figure 18. Thus, (β-γ )-spectral
modes with different frequencies have to be composed. Now, the secondary instability
modes are no more characterized by a distinct frequency in physical space as long as
the measuring position is steady, as it is for steady primary disturbances. The content
of the secondary mode in the frequency space corresponds to its spectral content
in spanwise wavenumber space, i.e. each secondary mode causes a multi-frequency
time signal at a fixed measuring position. In fact, equation (5.2) removes the Doppler
frequency shift felt by a steady observer when looking at the secondary instability
modes that travel with the primary wave.

With this analysis method, the secondary instability behaviour becomes transparent.
The unsteady primary saturated state is represented by one curve (l = 0, i.e. βm = lβ1 =
0), and the secondary modes can be unambiguously identified, see figure 18. After
a short transient region the background disturbances undergo strong amplification,
especially the component βm =98, which attains the largest amplitude in this region.
This mode grows over the smaller frequency modes, although its effective initial
amplitude is smaller. The maximum amplification rate is slightly higher than in the
reference case VORTEX + B. For the growth of the low-frequency modes, a significant
change can be observed. First, the modes are neutrally stable or even damped, but
in the end they grow very fast, clearly nonlinearly generated by the high-frequency
modes. Recall that modes l1 and l2 generate modes l1 ± l2.

Downstream of x ≈ 2.1, a distinct saturation plateau of the secondary instabilities
can be observed. In contrast to steady crossflow-vortex scenarios, here the growth of



84 P. Wassermann and M. Kloker

the secondary instabilities does not lead directly to laminar breakdown: it takes about
3.5 fundamental streamwise wavelengths from the beginning of secondary saturation
to the final breakdown. During this stage, modes around βm = 42 distinctly grow and
seem to end the transition, see the inset in figure 18.

Before going on with the detailed analysis of the disturbance development, we will
discuss the influence of an additional primary subharmonic wave (0.5, 0.5) with about
the (1, 1) amplitude at the first disturbance strip. A DNS of this case reveals that (1, 1)
is virtually unaltered and that downstream of the saturation of (1, 1) the subharmonic
mode surpasses (1, 1) in amplitude for x > 2.3. This is reminiscent of subharmonic
secondary instability but may, apart from nonlinear interactions, be caused partially
by primary instability because (0.5, 0.5) indeed grows primarily stronger than (1, 1) and
persistent for x > 2.3. In physical space, first two travelling vortices per subharmonic
spanwise wavelength are visible according to the grown (1, 1) mode. However, with
growing (0.5, 0.5) they do not merge as known from spanwise vortices in free shear
flows, but one of them becomes stronger and larger further downstream while the
other disappears. The high-frequency secondary instability is observed at the stronger
vortex with the same properties as in the case WAVE + B discussed here in detail.
The inclusion of subharmonic modes (with multiples of β = 7) in the background
pulse also does not lead to a different evolution. The secondary mode βm = 7 behaves
very much like βm = 14.

Continuing the analysis of case WAVE, isocontours of the ũs,l-amplitude for βm =
14, βm = 98 and βm = 210 in the crosscut corresponding to figure 13 reveal the
origin of the secondary instability (figure 19). For the most amplified instability with
βm = 98 the location of the largest amplitude – marked by the cross – perfectly
coincides with the minimum of the zm-gradient of the time-averaged streamwise
velocity component, see figure 13(c), ζ ≈ 0.068. Since the y-gradient at this position
is about four times larger, it is not so obvious to call this secondary mode a ‘z’ mode
as done in the reference case VORTEX + B. The high-frequency mode (βm = 210)
is situated somewhat further away from the wall in the top region of the shear
layer, and clearly is reminiscent of the ‘y’ mode found in the former investigation
of crossflow-vortex dominated scenarios. The low-frequency mode βm = 14 clearly
alters its amplitude distribution downstream. In the region of neutral behaviour it
is rather distributed (figure 19a), whereas it is a distinct localized mode, with a
double-maximum appearance, once it strongly grows (figure 19b). The mode with
βm = 42 that seems to end the saturation stage is located at the downdraft vortex
side under the vortex, very close to the wall (figure 19e). It sits in a region of high
shear connected to the wall-normal gradient of the streamwise velocity and is not
consistent with the known low-frequency ‘z’ mode in the steady-vortex case.

The higher-frequency regions found in the experiments of Lerche and Bippes
(see figure 1) seem to reflect both ‘z’ and ‘y’ modes, although it is difficult to
discern different modes. Note that the contribution of higher frequency (‘y’-)modes
is enhanced in this representation because the second time derivative has been
employed. (Thereby, the amplitude of a single-frequency mode scales quadratically
with its frequency.) Apart from that, the occurrence of a secondary-instability mode
depends also on its intial amplitude, i.e. its content in the background disturbances.
In this respect, the ‘y’ mode may be favoured by the turbulence level in the free
stream, when compared to the ‘z’ mode that is situated closer to the wall. The DLR
wind tunnel has indeed a larger turbulence level than the ASU tunnel, and in the
latter a dominating ‘z’ mode has been found in the steady scenario as in our DNS
with background disturbances excited at the wall.
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moving system. Isolines from 0.35 to 0.95 with a 0.2 spacing are shown. The thin lines indicate
the deformed mean flow, and the dotted lines the laminar boundary-layer edge. To scale.

The downstream amplification and spreading of the background wave packet in
physical space is visualized by means of ‘λ2’ isosurfaces in figure 20. (These isosurfaces
identify vortical structures by locating a pressure minimum in a plane, see Jeong &
Hussain 1995). The background disturbance input is at ξ ≈ 1.6, upstream of the
domain shown. At t/T = 0.75, the pulse disturbance is visible at ξ ≈ 2.55, in
between the skew primary vortical structures. At t/T = 0.00 a cascade of three small
finger-like vortices twining around the left, upward moving side of the travelling
primary crossflow vortex at ξ ≈ 2.7 can be seen, with their axes aligned at about
20◦ to it (note the compression of the ξ -axis). The secondary vortices are co-rotating,
anticlockwise when looking downstream, but in the opposite direction with respect
to the primary vortices. By travelling downstream, an increasing number of ‘finger’
vortices appear with ongoing erosion of the primary vortex (t/T = 0.25, 0.50).
However, the disappearance of the primary vortices downstream of ξ = 3.2 is partially
due to a saturation-amplitude lowering also present without the pulse disturbances,
cf. figure 10. The simultaneous visibility of at least two virtually equal finger-vortex
cascades along the streamwise direction is an expression of the amplitude plateau in
figure 18. Compared to case VORTEX, the individual finger vortices of a cascade
have a larger streamwise spacing because the dominating frequency βm = 98 is
about 1.6 lower than in case VORTEX. Because they slide downstream along the
skew crosswise travelling primary vortices, their effective direction of movement is
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Figure 20. Visualization of vortical structures in the instantaneous flow fields for case
WAVE+ B, saturated crossflow wave plus periodic background pulses, by λ2-isosurfaces,
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streamwise, similar to case VORTEX + B. Further downstream, the secondary finger
vortices are stretched, and the downstream tips of an upstream cascade overlap the
upstream ends of a preceding cascade.

Visualizing the vortical structures in a close-up of the relevant region with a higher
λ2-value for the isosurface (figure 21) reveals the mechanism responsible for the
final breakdown. The secondary finger vortices strongly modulate the primary vortex
during a saturated state, and finally the large primary structure breaks up into several
smaller vortices still rotating clockwise. Those are somewhat under the finger vortices,
but locally almost parallel to them. Thus, counter-rotating vortices of similar strength
are present which form vortical bridges in between them (ξ ≈ 3.7, ζ ≈ 0.05, at
t/T = 0.3). Hairpin vortices evolve, a process known to cause the final randomization
process. No clear vortical structure could be found connected to the mode with
βm = 42 close to the wall. It just seems to support the vortex split-up process.
Contrarily, in case VORTEX + B the final breakdown is caused by tertiary vortices
appearing within the closer-spaced finger vortices within a cascade. This process
is obviously faster than the vortex split-up process observed in case WAVE + B.
This explains the secondary-instability amplitude-saturation plateau prior to break-
down in the case of the travelling vortex.

6. Conclusions
Spatial direct numerical simulations have been used to investigate the nonlinear

saturated state and the secondary instability mechanisms initiated by a single unsteady
crossflow mode in a decreasingly accelerated three-dimensional flat-plate boundary
layer. The most important results are:

(i) The forcing of a single unsteady crossflow mode with frequency β1 and
spanwise wavenumber γ1 results in a periodic saturated state with crossflow vortices
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travelling in the spanwise direction at constant speed β1/γ1. In the frequency-spanwise
wavenumber spectrum this saturated state is given by the spectral modes n (β1, γ1).

(ii) The travelling vortices possess a stronger streamwise vorticity component
than their steady counterparts. They form strong shear layers inside the boundary
layer, much closer at the wall, broader, and less tilted than steady vortices. These
shear layers are dominated by the wall-normal gradient. Upon providing background
disturbance pulses, a strong convective secondary instability mechanism is observed
which globally is similar to the steady-vortex case.

(iii) To analyse the secondary instability mechanism unambiguously, an analysis
method based on a Galilean-transformed coordinate system moving spanwise with
the primary crossflow vortices is necessary.

(iv) For the secondary instability in the moving system, various modes can be
identified, which are located at different positions inside the most pronounced shear
layer. The amplification of the most unstable secondary mode, a kind of a so-called
z-mode, is somewhat higher than known from steady-vortex induced regimes; its
frequency is about 1.6 times lower, which is about seven times the primarily most
unstable frequency.

(v) Each secondary mode in the moving coordinate system translates into a
multi-frequency disturbance in physical space with a steady observer.

(vi) Unlike the steady-vortex scenario, a pronounced saturation appears for the
secondary instabilities. Prior to final breakdown, a medium-frequency mode undergoes
a second amplitude boost, ending the saturation stage.

(vii) Like the steady-vortex scenario, the natural disturbance selection leads to a
packet of small finger vortices sliding downstream along the upper updraft side of
the travelling priming vortex. Their streamwise spacing is larger than in the steady-
vortex case. On travelling downstream, the secondary finger vortices persist for several
primary streamwise wavelengths. They seem to modulate the priming vortex into an
adapted group of smaller vortices, thus providing counter-rotating vortices to the
finger vortices. Eventually the almost parallel counter-rotating vortices of similar
strength locally connect, forming horseshoe type bridges, and turbulence is at hand.

(viii) The second medium-frequency amplitude rise occurs simultaneously with the
‘modulation’ process. This indicates an instability of the saturated secondary state
originating from the lower downdraft side of the travelling primary vortex, supporting
its break-up.

The financial support of this work by the Deutsche Forschungsgemeinschaft, DFG,
under contract Kl 890/2 is gratefully acknowledged.
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